Estrogen Detoxification

Estrogen & Its Detoxification

- 3 key phases of detoxification
- Involves proper functioning of liver, stomach, gall bladder, intestines, kidneys, and more!

Phase 1 Detoxification

- The body regularly removes (detoxifies) hormones to regulate the levels.
- Sex hormones are steroid-based hormones (meaning they are built from cholesterol). They are fat-soluble to move through target cells easily.
- Removing hormones requires making them more watersoluble.
- Phase 1 detoxification uses the CYP450 enzyme family to convert estrone and estradiol from a fat-soluble hormone, to a water-soluble hormone.

Phase 1 Detoxification: Cytochrome Enzyme Systems

- Estrone and estradiol are hydroxylated using CYP 1A1, 1A2, 1B1, and 3A4 enzymes
- Hydroxylation occurs in the liver and peripheral tissues
- Phase 1 creates oxidative intermediates
- Oxidative intermediates are neutralized in phase 2 (methylation, sulfation, glucuronidation)
- Metabolites can still act on E receptors (weakly)
- Genetics + environment influence
 this process

Phase 1 Detoxification: Cytochrome Enzyme Systems

"2-OH" 2-hydroxyestrone & 2-hydroxyestradiol	"4-OH" 4-hydroxyestrone & 4-hydroxyestradiol	"16-OH" 16-hydroxyestrone
CYP1A1 & CYP1A2	CYP1B1	CYP3A4
Most stable, least reactive, and most abundant pathway	Potentially genotoxic, most reactive metabolite	Proliferative Can be good for bones, but not so good with breast/fibroids/endo
Weakest binding potential to E receptor Anti-proliferative effects on cancer cell lines	If not methylated, it can become the free radical 3,4-quinone which can cause DNA damage	Binds most strongly to estrogen receptor, though still weakly

Phase 1: 2, 4, and 16-OH estrogens are oxidative. Phase 2 neutralizes these metabolites. They are also eliminated in urine.

Phase 2 Detoxification: Methylation, Sulphation, Glucuronidation

- 2-OH & 4-OH catechol estrogens get a methyl group added by catechol-O-methyltransferase (COMT)
- Leads to production of
 - 2- and 4-methoxyestrone
 - 2- and 4-methoxyestradiol
- Conjugation with glucuronic acid and sulfate in liver more water soluble
- Sulphation & glucuronidation to support excretion thru bile into gut
- Methyl, sulfate, or glucuronide metabolites are neutral and water soluble- easy to excrete!

Phase 3 Detoxification: Out Of Cells & Into (& Out Of) Gut

- Estrogen glucuronide and sulfate metabolites leave the liver thru bile and are excreted through feces or urine
- B-glucuronidase
 - Removes glucuronide tag, "recycles" estrogen back to active form
 - Found in tissues (ie breast) but also made in the gut by microbiome
 - When made in gut, estrogens can be recirculated rather than excreted, increasing estrogen load
 - Measured on some stool panels
 - Calcium-d-glucurate supplement/in food blocks this enzyme
- Indican can be a marker for gut dysbiosis, and we have seen (in our data) that higher indican correlates with higher estrogen levels

Phase 3 Detox On The DUTCH Report

Tough to exactly measure, as it's not a urine metabolite

We added indican to our report in 2022 to give insight into gut health.

Data from Precision Analytical samples in postmenopausal women and in men have shown a small, but stastically significant association between elevated urinary indican levels (suggesting dysbiosis) and estradiol levels, reinforcing the assertion that GI dysbiosis is an important factor in circulating estrogen levels.

Category	Test		Result	Units	Normal Range	
		Nutritional Organic Acids				
Vitamin B12	Marker (may be deficient if	high) - (Urine)				
	Methylmalonate (MMA)	Above range	4.89	ug/mg	0 - 2.5	
Vitamin B6 Markers (may be deficient if high) - (Urine)						
	Xanthurenate	Above range	1.23	ug/mg	0.12 - 1.2	
	Kynurenate	Above range	5.35	ug/mg	0.8 - 4.5	
Biotin Marker (may be deficient if high) - (Urine)						
	b-Hydroxyisovalerate	Within range	7.9	ug/mg	0 - 12.5	
Glutathione Marker (may be deficient if low or high) (Uring)						
	Pyroglutamate	Below Limit of Detection	0.0	ug/mg	28 - 58	
Gut Marker (potential gut putrefaction or dysbiosis if high) - (Urine)						
	Indican	High end of range	90.4	ug/mg	0 - 100	
		Neuro-related Markers				
Dopamine M	letabolite - (Urine)					
	Homovanillate (HVA)	Low end of range	4.4	ug/mg	3 - 11	
Norepinephrine/Epinephrine Metabolite - (Urine)						
	Vanilmandelate (VMA)	Above range	7.3	ug/mg	2.2 - 5.5	
Neuroinflam	mation Marker - (Urine)					
	Quinolinate	Above range	13.2	ug/mg	0 - 9.6	
		Additional Markers				
Melatonin (*	measured as 6-OH-Melaton	nin-Sulfate) - (Urine)				
	Melatonin* (Waking)	Below range	1.3	ng/mg	10 - 85	
Oxidative Stress / DNA Damage, measured as 8-Hydroxy-2-deoxyguanosine (8-OHdG) - (Urine)						
	8-OHdG (Waking)	Within range	3.8	ng/mg	0 - 5.2	

Summary

	Phase 1: CYP Enzyme detox	Phase 2: Neutralization & water solubility	Phase 3: Excretion
Key steps	CYP enzymes convert estradiol into 3 main metabolites, 2-OH, 4- OH, 16-OH (which are oxidative!)	Methylation, glucuronidation, & sulfation stabilize and are easily excreted	Excretion out of liver cells and into bile to feces/urine (hopefully no excess B- glucuronidase and no excess reabsorption!)
Potential signs of a problem	Excess relative production of 4-OH or 16-OH metabolites	Poor methylation, slow COMT, high B-glucuronidase	Dysbiosis, slow bowel movements, dehydration, high estrogen
How to help	Ensure liver function Requires Iron +DIM, I3C, quercetin, sulforaphane	Phase 2 support includes B6, B12, folate, methionine, choline, TMG, sulfation support Genetic snps and nutrient deficiency may inhibit	Improve the microbiome BM daily Ensure stomach acid Increase water, fiber + Prebiotics, Calcium D glucarate Unpeeled, raw carrots AVOID: antibiotics, junk food, alcohol

Clinical Impact Of Impaired Metabolism After Menopause

- Clinical impact is lower in menopause because estrogen and metabolites are very low
- HRT increases estrogens and therefore clinical impact of detox
- Phase 1:
 - 16-OH like estrone in ER receptor activity
 - Higher 16-OH associated with lower osteopenia
 - Higher 16-OH associated with higher *recurrence* of breast cancer in survivors
 - Higher 4-OH remains genotoxic, but levels are very low- impact not clear
- Phase 2:
 - Not well understood when estrogens are so low
 - Implies nutrient deficiency or suboptimal lifestyle which have other health implications

Estrogen Detox in Menopause

- Estrogen detox pathways are the same in menopause
- The clinical impact is not well understood when estrogen is this low
- HRT increases the detox load
- Maintaining healthy detox is relevant, especially with HRT
- Support all phases: Liver, gallbladder, methylation, hydration, bowel transit time, gut microbiome

Thank You!

If you are interested in learning more about hormones, each week we hold onehour long mentorship sessions! Once you are a registered DUTCH provider, you can book these through our online scheduling link. Please call to get registered today.

For questions, contact:

info@dutchtest.com

(503) 687-2050

www.dutchtest.com

