

### Prostate Cancer

# CASE STUDY using HuMAP

www.regeneruslabs.com

Created by Kate Garden BSc(Hons) IFMCP









# **ABOUT KATE**

Experienced Nutritional Therapist (2003)

IFM Certified Practitioner (2018)

Online Nutrition Clinics

Satellite London Clinic

Consultancy service for health businesses

Mentorship "Practice like a Pro' for NT's & GP's

www.kategarden.co.uk info@kategarden.co.uk



# LEARNING OBJECTIVES

- How to evaluate and assess of key male hormones and their metabolites using Hormone and Urinary Metabolites Assessment Profile HUMAP
- How to assess parent hormones and their metabolites to reveal how the body is breaking down and detoxifying • key hormones
- To understand how a Functional Medicine approach, with a nutritional and lifestyle plan, can support a case of prostate cancer





# Why use **Urinary Hormone Testing?**



#### **Comprehensive Overview**

- Assessment of steroid hormones & their metabolites
- Assessment of efficiency of key enzymes



#### **Unique Viewpoint for practitioner**



#### Ease of specimen collection

- Non-invasive
- Test can be performed at home



#### Timing





regenerus labs 

 Hormone bioavailability and utilization • Metabolic pathways that can highlight risk factors for hormone dependent

cancers

• Ability to measure 4 time points

- Dinnertime
- Bedtime
- Waking
- 2 hrs Post Waking
- 5<sup>th</sup> tube for any optional middle of night specimen

# Why use HuMAP?



#### Presentation

- Super clear
- Easy to understand •





#### Easy to add on other panels

- NeuroBasic Profile
- Comprehensive Neurotransmitter Profile



#### **Smaller Profile Options**





**OMNOS**<sup>™</sup> regenerus labs 

#### **Comprehensive metabolites**

• Hormone metabolite ratios can help assess risk of breast/prostate cancer

• Oestrogen Metabolites Profile Sex Hormone Profile • Androgens & Progesterone Profile Adrenal Corticoids Profile

# HuMAP: Summary page

#### **Identifies clearly**

- The most clinically actional information
- Key findings of the oestrogens
- Key findings of the corticoids
- Key relationships of enzyme activity
  - 5a reductase
  - Aromatase
  - COMT/Methylation





#### **OMNOS**<sup>™</sup> regenerus labs



# **Case Study:** DAVID

60-year-old single male. Musician, travels, shift work, often night sets. Can sleep in day and has trouble falling asleep.

Main Aim - health MOT, help in loosing weight, interested in functional medicine/nutrition, wants more energy.

Diet

- Breakfast often skips breakfast or just has fruit and organic fruit yoghurt
- sausage rolls, pies, mackerel fillets in wraps Snacks 5 biscuits or crips Lunch
- meat and or vegetable curries, stir-fries, sausages with onions and roast potatoes • Dinner
- kombucha, bottled water, alcohol when at work and socializing (varies 0- 30 units weekly) • Drinks

#### Exercise

• Quite sedentary lifestyle, occasional swimming, walking.

Weight = 17.5 stone Height 5ft 10 inches. BMI = 35 Waist/hip ratio: high with central obesity

#### Main Symptoms

- ENERGETIC Tiredness, lethargy, poor sleep
- COGNITIVE Depression, ADHD type symptoms
- HORMONAL / CARDIOVASCULAR Erectile dysfunction, low libido, poor urine flow, some sporadic pain in the testicle and prostate area



### **Blood Test Results:** DAVID

| BIOCHEMISTRY |                                                    |          |            |  |  |  |  |
|--------------|----------------------------------------------------|----------|------------|--|--|--|--|
| Homocysteine | * 20.72                                            | umol/L ! | 5.5 - 16.2 |  |  |  |  |
|              | Elevated values may occur if correct sample        |          |            |  |  |  |  |
|              | collection procedures are not followed. An EDTA or |          |            |  |  |  |  |
|              | a SERUM sample separated within 1 hour is          |          |            |  |  |  |  |
|              | recommended.                                       |          |            |  |  |  |  |
| LDH          | 223                                                | IU/L     | 135 - 225  |  |  |  |  |
|              |                                                    |          |            |  |  |  |  |

• Hcy 20.72 (umol/L 5.5-16.2) • MCHC 353 (g/L 300-350)

HAEMATOLOGY

HAEMOGLOBIN (g/L) HCT RED CELL COUNT MCV MCH MCHC (g/L) RDW PLATELET COUNT MPV

WHITE CELL COUNT Neutrophils Lymphocytes Monocytes Eosinophils Basophils ESR

#### BIOCHEMISTRY

Active B12 SODIUM POTASSIUM CHLORIDE BICARBONATE UREA CREATININE eGFR (CKD-EPI)

BILIRUBIN ALKALINE PHOSPHATASE ASPARTATE TRANSFERASE ALANINE TRANSFERASE LDH CK GAMMA GT TOTAL PROTEIN ALBUMIN GLOBULIN CALCIUM Corrected Calcium PHOSPHATE URIC ACID FASTING BLOOD GLUCOSE FASTING TRIGLYCERIDES FASTING CHOLESTEROL HDL CHOLESTEROL HDL % of total

| 151                           | g/L       | 130 - 170    |
|-------------------------------|-----------|--------------|
| 0.428                         |           | 0.37 - 0.50  |
| 4.67                          | x10^12/L  | 4.40 - 5.80  |
| 91.6                          | fL        | 80 - 99      |
| 32.3                          | pg        | 27.0 - 33.5  |
| * 353                         | g/L       | 300 - 350    |
| 12.4                          |           | 11.5 - 15.0  |
| 285                           | x10^9/L   | 150 - 400    |
| 9.7                           | fL        | 7 - 13       |
| 6.75                          | x10^9/L   | 3.0 - 10.0   |
| 55.9% 3.77                    | x10^9/L   | 2.0 - 7.5    |
| 29.5% 1.99                    | x10^9/L   | 1.2 - 3.65   |
| 11.3% 0.76                    | x10^9/L   | 0.2 - 1.0    |
| 2.4% 0.16                     | x10^9/L   | 0.0 - 0.4    |
| 0.9% 0.06                     | x10^9/L   | 0.0 - 0.1    |
| 2                             | mm/hr     | 1 - 20       |
| Note ref range raised in pati | ents over | 40           |
|                               |           |              |
|                               |           |              |
| 32                            | pmol/L    | 25.1 - 165.0 |
| 139                           | mmol/L    | 135 - 145    |
| 4.1                           | mmol/L    | 3.5 - 5.1    |
| 103                           | mmol/L    | 98 - 107     |
| 23                            | mmol/1    | 22 - 29      |
| 4.4                           | mmol/L    | 1.7 - 8.3    |
| 83                            | umol/L    | 66 - 112     |
| 89                            |           |              |
| Adjusting eGFR for ethnicity  | is no lon | ger advised  |
| NICE OVER midlings            |           |              |
| as per NICE CKD guidlines.    |           |              |
| Note: eGFR calc changed to CK | D-EPI e/f | 28.11.22     |
| 15                            | umol/L    | 0 - 20       |
| 74                            | IU/L      | 40 - 129     |
| 23                            | IU/L      | 0 - 37       |
| 29                            | IU/L      | 10 - 50      |
| 216                           | IU/L      | 135 - 225    |
| 124                           | IU/L      | 38 - 204     |
| 3 4                           | IU/L      | 10 - 71      |
| 65                            | g/L       | 63 - 83      |
| 4 4                           | g/L       | 34 - 50      |
| 21                            | g/L       | 19 - 35      |
| 2.27                          | mmol/L    | 2.20 - 2.60  |
| 2.30                          | mmol/L    | 2.20 - 2.60  |
| 0.90                          | mmol/L    | 0.87 - 1.45  |
| 341                           | umol/L    | 266 - 474    |
| 5.4                           | mmol/L    | 3.9 - 5.8    |
| 0.9                           | mmol/L    | < 2.3        |
| 4.8                           | mmol/L    | Optimum <5.0 |
| 1.3                           | mmol/L    | 0.9 - 1.5    |
| 27                            | 90        | 20 and over  |

| I DI CUOLESTEDOL            | + 2 1                                               |                 | In to 2.0    |  |  |  |
|-----------------------------|-----------------------------------------------------|-----------------|--------------|--|--|--|
| Non-HDL Cholesterol         | 3.5                                                 | mmol/L          |              |  |  |  |
| IBON                        | 21 4                                                | umol/L          | 10 6 - 28 3  |  |  |  |
| TRON                        | 64                                                  | umol/L          | 41 - 77      |  |  |  |
| TRANSFERRIN SATURATION      | 33                                                  | 8<br>8          | 20 - 55      |  |  |  |
| FERITIN                     | 100                                                 | ug/L            | 30 - 400     |  |  |  |
| C Reactive protein          | 4 3                                                 | mg/L            | <5 0         |  |  |  |
| CRP - High sensitivity      | 4 3                                                 | mg/l            | 0 0 - 5 0    |  |  |  |
| Haemoglobin Alc             | * 7.0                                               | *               | 4.0 - 6.0    |  |  |  |
| HbAlc (mmol/mol)            | * 53                                                | mmol/mo         | 1 20 - 41    |  |  |  |
| OFIT Comment                | No Specimen received                                |                 |              |  |  |  |
| Red cell folate             | * 315                                               | nmol/L          | 340 - 1474.7 |  |  |  |
|                             | (240 pmp)/T is appreciated with follots definitency |                 |              |  |  |  |
| Prostate Specific Ag(Total) | * 6.01                                              | ug/l            | 0.00 - 2.99  |  |  |  |
| ENDOCRINOLOGY               |                                                     |                 |              |  |  |  |
|                             | Agreed age-related thresholds in the United         |                 |              |  |  |  |
|                             | Kingdom for referral for specialist evaluation for  |                 |              |  |  |  |
|                             | Kingdom for feferial for specialist evaluation for  |                 |              |  |  |  |
|                             | prostate cancer (age 50 - 69 years as formally      |                 |              |  |  |  |
|                             | advocated by NICE) are:                             |                 |              |  |  |  |
|                             | 40 - 49 years: >/= 2.5                              |                 |              |  |  |  |
|                             | 50 - 69 years: >/= 3                                |                 |              |  |  |  |
|                             | >/= 70 years: >/= 5                                 |                 |              |  |  |  |
|                             | Please note new refer                               | ence range from | 29/09/2021   |  |  |  |
| Prostate Specific Ag(Free)  | 0.74                                                | ug/l            | 0 - 0.90     |  |  |  |
| Free:Total ratio            | 0.12                                                |                 |              |  |  |  |
|                             | >0.24 is normal                                     |                 |              |  |  |  |
| THYROID STIMULATING HORMONE | 2.30                                                | mIU/L           | 0.27 - 4.2   |  |  |  |

pmol/1 12.0 - 22.0

nmol/L 50 - 200

20.1

\* 40

Interpretation of results:

Insufficient 25 - 49 nmol/L

Normal Range 50 - 200 nmol/L

Consider reducing dose >200 nmol/L

Deficient <25 nmol/L

THYROID STIMULATING HORMONE FREE THYROXINE 25 OH Vitamin D

LDL Cholesterol HbA1c PSA 25 – OH Vitamin D. Red cell folate



# **Blood Test Results:** DAVID

| 3.10 | (nmol/L Up to 3)    |
|------|---------------------|
| 53   | (nmol/mol 20 – 41)  |
| 6.01 | (ug/L 0 – 2.99)     |
| 40   | (nmol/L 50 – 200)   |
| 315  | (nmol/L 340 – 1474) |
|      |                     |

# Initial Plan : DAVID

IFM Cardiometabolic Diet

- With a focus on blood sugar balance
- Importance of timing of meals
- Protein in the morning
- Last meal before 8pm
- Healthier, protein-based snacks

Sleep Hygiene

Exercise

• Paced walking every day at least 40 minutes

Supplements

- Vitamin D with K2
- Multi-vitamin
- Glucose Optimizer

Referred to GP re HbA1c and prostate antigen elevations





# Referred to GP: DAVID

Re: DAVID \*\*\*\*\*\* DOB \*\*/\*\*/63

I saw Mr. David \*\*\*\*\*\*\* for a nutrition consultation recently and ran some blood and urine tests to check his immunity, nutrient levels and general metabolism.

I wanted to highlight some anomalies, listed below, and have attached the blood work and microbiology for your reference. Mr. David \*\*\*\*\*\*\*reported a pain in the prostate area on waking and also occasional pains in his feet, so I refer him to your good self for any further assessment.

Haemoglobin A1c 7.0 % (ref range 4.0 - 6.0) HbA1c (mmol/mol) 53 (ref range 20-41) Prostate Specific Ag (Total) 6.01 (ref range 0.00-2.99) Vitamin D - 25OH 40 nmol/L (ref range 50-200)

I would also like to let you know that I have advised him on a reduced sugar, low carbohydrate and cardio protective eating plan and lifestyle practices (including exercise, meal timing and sleep hygiene) to reduce his HbA1c levels and support his general cardiovascular health.

I also suggested a Vitamin D, multi-vitamin and blood sugar supportive supplement to \*\*\*\*\*\*\*\* to address the issues and deficiencies observed.

Please do feel free to contact me, should you need any clarification on the above request or information.

Best wishes,



## 3 months later: DAVID

#### David's GP has confirmed his diabetes with his own set of bloods

- David is waiting to be referred to a NHS Dietician for management
- David has been referred for prostate cancer investigations

Meanwhile David is sticking robustly sticking to the plan

- CM Plan and supplements
- Walking 40 minutes every day
- Reduced alcohol significantly
- HbAlc has already reduced to 46 from 53
- Has lost 1 stone
- Feeling more energetic /better

We decided to run HuMAP whilst he was investigated being for prostate cancer



## 4 months later: DAVID

Whilst waiting for HuMAP

HbA1c PSA 25 – OH Vitamin D. 36(nmol/mol 20 - 41)8.06(ug/L 0 - 2.99) 143 (nmol/L 50 - 200)

| TRANSFERRIN SATURATION      | 40    |
|-----------------------------|-------|
| Haemoglobin Alc             | 5.5   |
| HbAlc (mmol/mol)            | 36    |
|                             |       |
| ENDOCRINOLOGY               | 1.12  |
| Prostate Specific Ag(Total) | * 8.0 |
|                             | Agre  |
|                             | King  |
|                             | pros  |
|                             | advo  |
|                             | 40 -  |
|                             | 50 -  |
|                             | >/=   |
| Prostate Specific Ag(Free)  | 0.80  |
| Free:Total ratio            | 0.10  |
|                             | >0.2  |
| 25 OH Vitamin D             | 143   |
|                             | Inte  |
|                             |       |

eed age-related thresholds in the United gdom for referral for specialist evaluation for state cancer (age 50 - 69 years as formally ocated by NICE) are: 49 years: >/= 2.5 69 years: >/= 3 70 years: >/= 5 ug/l 0 - 0.90 24 is normal nmol/L 50 - 200 erpretation of results: Deficient <25 nmol/L Insufficient 25 - 49 nmol/L Normal Range 50 - 200 nmol/L Consider reducing dose >200 nmol/L

SPECIAL PATHOLOGY

T.I.B.C

Free Testosterone

10.4 pg/ml 4.0 - 16.0 Result from Referral Laboratory ID [900].



### OMNOS<sup>™</sup> regenerus labs •**i**!••**!**••

umol/L 41 - 77 95 20 - 55 4.0 - 6.0 8 mmol/mol 20 - 41

#### 06

58

#### ug/1 0.00 - 2.99

### **Prostate Cancer:** RISKS



Elancheran Ramakrishnan et al, Urology Research & Therapeutics Journal 2017

'Strategy towards Diagnosis and Treatment for Prostate Cancer' https://www.researchgate.net/publication/321756981

#### Prostate cancer is the most common cancer & the second most common cause of cancer-related death in men

RL Siegel et al. 2021 Cancer Statistics, Cancer J Clin https://doi.org/10.3322/caac.21654



# Hormones & the prostate



### oestrogen and progesterone.

- exogenous
- activity of aromatase enzyme

Aromatase up-regulation, insulin and raised intracellular oestrogens in men, induce adiposity, metabolic syndrome and prostate disease, via aberrant ER-α and GPER signalling. Mol Cell Endocrinol. 2012 Jan 5. Williams G.



Prostate cells are influenced by hormones including testosterone, DHT,

• Oestrogens within circulation can either be endogenous or

• Oestrogen can be produced from testosterone through the

• Oestrogen is proliferative hormone, promoting cell growth

# HuMAP: DAVID

Key relationships





### OMNOS<sup>™</sup> regenerus labs •:**|**••**|**••**|**••**|**••





#### **KEY RELATIONSHIPS**

The graphs to the right represent metabolism preference by key enzymes, indicated by the arrow.

Metabolites in the 5-alpha pathway are more androgenic than their 5-beta counterparts and can be responsible for androgenic symptoms even when hormone levels appear normal.

Aromatase is an enzyme found in the greatest amounts in peripheral fat tissue which can increase estrogens in both males and females.

4-OH-E1 is considered unfavorable due to its carcinogenic potential within breast and prostatic tissue as a reactive metabolite. When methylated by COMT, this reactive metabolite becomes stable and can be removed from the body.



OMNOS<sup>™</sup> regenerus labs

# **KEY ENZYMES**







# Aromatase CYP19A1

#### Alcohol : https://pubmed.ncbi.nlm.nih.gov/11163119/

Brain Injury :<u>https://www.sciencedirect.com/science/article/abs/pii/S0306452298003406</u>
Cortisol :<u>https://pubmed.ncbi.nlm.nih.gov/22315456/</u>
Diet - high glycemic foods :<u>https://pubmed.ncbi.nlm.nih.gov/22233684/</u>
Endocrine Disruptors /Xeno-oestrogens :<u>https://pubmed.ncbi.nlm.nih.gov/28578073/</u>
Forskolin (found in coleus plant) :<u>https://pubmed.ncbi.nlm.nih.gov/14709151</u>
Greater adipose tissue/Leptin resistance/ Obesity :<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938647</u>/
High insulin: <u>https://pubmed.ncbi.nlm.nih.gov/22233684/</u>
Inflammatory cytokines: <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138722/</u>



### HuMAP: Overview





### OMNOS<sup>™</sup> regenerus labs





### OMNOS<sup>™</sup> regenerus labs





| CHOLESTEROL<br>PREIGNENCLONE<br>PREIGNENCLONE<br>PREIGNENCLONE<br>T7 OH PREGNENCLONE<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT<br>CRIDAT |                        |        |                 |   |     |   | OTTING CORTICOSTERONE |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------|-----------------|---|-----|---|-----------------------|---|
| Progesterones                                                                                                                                                                                      |                        | Result | Unit            | L | WRI | н | Reference Interval    |   |
| Progesterone <sup>‡</sup>                                                                                                                                                                          | (P4)                   | 0.10   | ng/mg Creat/Day |   | Δ   |   | 0.00-0.34             |   |
| 5a-Pregnanediol <sup>‡</sup>                                                                                                                                                                       | (5A-PD)                | 4      | ng/mg Creat/Day |   |     |   | 9 - 50                |   |
| 5β-Pregnanediol <sup>‡</sup>                                                                                                                                                                       | (58-PD)                | 48     | ng/mg Creat/Day |   |     |   | 55 - 250              |   |
| Allopregnanolone <sup>‡</sup>                                                                                                                                                                      | (ALLOP)                | 0.7    | ng/mg Creat/Day |   |     |   | 0.8-6.4               |   |
| 21-Hydroxyprogesterone <sup>±</sup>                                                                                                                                                                | (21-OHP)               | 0.36   | ng/mg Creat/Day |   |     |   | 0.6-3.0               |   |
| 17-Hydroxyprogesterone <sup>1</sup>                                                                                                                                                                | (17-OHP)               | 0.21   | ng/mg Creat/Day |   |     |   | 0.19-0.85             |   |
| 5-pregnenetriol <sup>1</sup>                                                                                                                                                                       | (5-PT)                 | 54     | ng/mg Creat/Day | _ | 4   |   | 35 - 105              |   |
| Ratios and Calculations                                                                                                                                                                            |                        | Result | Unit            | L | WRI | н | Reference Interval    | _ |
| 5A-PD:5B-PD <sup>1</sup> (alph                                                                                                                                                                     | na vs beta metabolism) | 0.079  |                 |   | 4   |   | 0.06 - 0.24           |   |

# Progesterone in male health

#### • Progesterone important in male health too, although not always considered

- Building block for testosterone and bone mass
- Important to nervous and cardiovascular systems
- Helps with blood sugar balance
- Regulates vital sperm functions including motility
- In relation to the Prostate progesterone balances the proliferative effects of oestrogen



# Oestrogen dominance in men

#### **Oestrogen dominance in men is linked to :**

- Cardiovascular health
- Prostate health
- Urinary Issues
- Infertility
- Erectile dysfunction





# Progesterone and the prostate

- <u>Progesterone receptor</u> (PR) localizes in the prostate stroma.
- Progesterone suppresses stromal cell proliferation with implications in BPH.
- PR suppresses tumour-favouring microenvironment in the prostate.
- PR regulates stromal differentiation and potentially prevents reactive stroma.
- The impact of PR on prostate diseases warrants further investigations.

Chen et al., 'Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer', J Steriod Biochem & Molecular Biol 2017. https://doi.org/10.1016/j.jsbmb.2016.04.008





# 11 BHSD2 activity **CORTICOIDS**

Cortisol \_\_\_\_\_







# Adrenal METABOLITES



Notes: WRI – Within Reference Interval - represented by bracket and stated ranges on report, Dark Blue = Below RI, Light Blue = WRI low, Green = Optimal, Yellow = WRI high, Red = Above RI, <dl = result below detection limit

<sup>‡</sup>This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U.S. Food and Drug Administration (FDA) has not approved or cleared this test; however, FDA clearance is not currently required for clinical use. Methodology: LCMS QQQ

Page 4 of 12

| н | Reference interval |
|---|--------------------|
|   | 6-40               |
|   | 14 - 110           |
|   | 3 - 18             |
|   | 2-10               |
|   | 9 - 35             |
|   | 25-95              |
|   | 45-280             |
|   | 15 - 100           |
|   | 10-55              |
|   | 30 - 95            |
|   | 35-240             |
|   |                    |



# Corticoid **RATIOS**

| Creatinine Waking+2hrs         87.7         mg/dL         35 – 240           Creatinine Dinnertime         74.8         mg/dL         35 – 240           Creatinine Bedtime         78.3         mg/dL         35 – 240 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Creatinine Dinnertime         74.8         mg/dL         35 – 240           Creatinine Bedtime         78.3         mg/dL         35 – 240                                                                              |
| Creatinine Bedtime 78.3 mg/dL 35-240                                                                                                                                                                                    |
|                                                                                                                                                                                                                         |
| Creatinine/day 70.7 mg/dL/Day A 35-240                                                                                                                                                                                  |
| Corticoid Metabolites and DHEA Result Unit L WRI H Reference Interval                                                                                                                                                   |
| Corticosterone <sup>‡</sup> (B) 10 ng/mg Creat/Day 6-34                                                                                                                                                                 |
| Tetrahydrodehydrocorticosterone <sup>‡</sup> (5B-THA) 22 ng/mg Creat/Day 44 – 150                                                                                                                                       |
| 5β-Tetrahydrocorticosterone <sup>‡</sup> (5B-THB) 63 ng/mg Creat/Day <u>58 – 240</u>                                                                                                                                    |
| 5α-Tetrahydrocorticosterone <sup>‡</sup> (5A-THB) 99 ng/mg Creat/Day <u>90 – 380</u>                                                                                                                                    |
| 11-Deoxycortisol <sup>‡</sup> (11-DOC) 0.46 ng/mg Creat/Day 0.30 - 1.2                                                                                                                                                  |
| 5α-Tetrahydrocortisol <sup>±</sup> (5A-THF) 334 ng/mg Creat/Day 420 - 1060                                                                                                                                              |
| 5β-Tetrahydrocortisol <sup>‡</sup> (58-THF) 1020 ng/mg Creat/Day 690 – 2240                                                                                                                                             |
| Tetrahydrocortisone <sup>‡</sup> (THE)         929         ng/mg Creat/Day         1200 – 3000                                                                                                                          |
| Dehydroepiandrosterone <sup>‡</sup> (DHEA) 15 ng/mg Creat/Day 18 – 170                                                                                                                                                  |
| Dehydroepiandrosterone Sulfate <sup>‡</sup> (DHEAS) 62 ng/mg Creat/Day 25 - 660                                                                                                                                         |
| Ratios and Calculations Result Unit L WRI H Reference Interval                                                                                                                                                          |
| DHEA+DHEAS <sup>‡</sup> 77 ng/mg Creat/Day 39 - 760                                                                                                                                                                     |
| THE+5A-THF+5B-THF <sup>‡</sup> (Metabolized Cortisol) 2280 ng/mg Creat/Day 2000-6000                                                                                                                                    |
| 5A-THF+5B-THF/THE <sup>‡</sup> (Cortisol/Cortisone Metabolites) 2                                                                                                                                                       |
| Cortisol/Cortisone <sup>‡</sup> (11B HSD activity) 0.24 0.18 - 0.60                                                                                                                                                     |
| 5A-THF/5B-THF ratio <sup>‡</sup> (alpha vs beta metabolism) 0.33 0.15 - 0.65                                                                                                                                            |





| Androgens                                                      |                     | Result | Unit            | L   | WRI |
|----------------------------------------------------------------|---------------------|--------|-----------------|-----|-----|
| Androstenedione <sup>‡</sup>                                   | (A4)                | 0.92   | ng/mg Creat/Day |     |     |
| EPI-Testosterone <sup>‡</sup>                                  | (EPI-T)             | 26     | ng/mg Creat/Day |     |     |
| Testosterone <sup>‡</sup>                                      | (T)                 | 12     | ng/mg Creat/Day |     |     |
| Androsterone <sup>‡</sup>                                      | (AN)                | 762    | ng/mg Creat/Day | _   |     |
| 11-hydroxy-Androsterone <sup>‡</sup>                           | (OHAN)              | 376    | ng/mg Creat/Day |     |     |
| 5α-Androstanediol <sup>‡</sup>                                 | (5A-AD)             | 20     | ng/mg Creat/Day |     |     |
| 5a-Dihydrotestosterone <sup>‡</sup>                            | (5A-DHT)            | 0.4    | ng/mg Creat/Day |     |     |
| Etiocholanolone <sup>‡</sup>                                   | (ET)                | 808    | ng/mg Creat/Day |     |     |
| Androgens                                                      |                     | Result | Unit            | L [ | WBI |
| 11-hydroxy-Etiocholanolone <sup>‡</sup>                        | (OHET)              | 137    | ng/mg Creat/Day |     |     |
| 5β-Androstanediol <sup>‡</sup>                                 | (58-AD)             | 64     | ng/mg Creat/Day |     |     |
| Dehydroepiandrosterone <sup>‡</sup>                            | (DHEA)              | 15     | ng/mg Creat/Day |     |     |
| Dehydroepiandrosterone Sulfate <sup>±</sup>                    | (DHEAS)             | 62     | ng/mg Creat/Day |     |     |
| Ratios and Calculations                                        |                     | Result | Unit            | L   | WRI |
| DHEA+DHEAS <sup>‡</sup>                                        |                     | 77     | ng/mg Creat/Day |     |     |
| Androsterone (5α) /<br>Etiocholanolone (5β) <sup>‡</sup> (5α F | Reductase Activity) | 0.94   |                 |     |     |
| Testosterone / EPI-Testosterone <sup>‡</sup>                   |                     | 0.48   |                 |     |     |



# OESTROGENS

#### ESTROGENS

The bar graph represents the relationship of the catechol estrogens (2-OH-E1, 4-OH-E1, 16-OH-E1) to each other. The expected percentage for each is represented by the shaded area.

The pathway illustrates phase 1 and phase 2 metabolism of both E1 and E2. Phase 1 metabolites, also known as catechol estrogens, are active and can induce estrogenic actions. Phase 2 metabolism gives insight into a patient's ability to methylate, or potentially inactivate harmful metabolites.

4-OH: potential for DNA damage







# Oestrogen **METABOLITES**



| Estrogens                       |            | Result | Unit            | L | WRI | н | Reference Interval |
|---------------------------------|------------|--------|-----------------|---|-----|---|--------------------|
| Estrone <sup>‡</sup>            | (E1)       | 4.3    | ng/mg Creat/Day |   |     |   | 1.8 - 5.0          |
| 2-Hydroxyestrone <sup>‡</sup>   | (2-OH-E1)  | 1.5    | ng/mg Creat/Day |   |     |   | 2.7 - 8.6          |
| 4-Hydroxyestrone <sup>‡</sup>   | (4-OH-E1)  | 0.28   | ng/mg Creat/Day |   |     |   | 0.0-0.5            |
| 16a-Hydroxyestrone <sup>‡</sup> | (16-OH-E1) | 0.71   | ng/mg Creat/Day |   |     |   | 0.5-4.9            |
| 2-Methoxyestrone <sup>‡</sup>   | (2-M-E1)   | 0.18   | ng/mg Creat/Day |   |     |   | 0.5-1.6            |
| 4-Methoxyestrone <sup>‡</sup>   | (4-M-E1)   | 0.030  | ng/mg Creat/Day |   |     |   | 0.03-0.17          |
| Estradiol <sup>‡</sup>          | (E2)       | 1.0    | ng/mg Creat/Day |   |     |   | 0.4 - 2.0          |
| 2-Hydroxyestradiol*             | (2-OH-E2)  | 0.20   | ng/mg Creat/Day |   |     |   | 0.02-0.55          |
| 4-Hydroxyestradiol <sup>‡</sup> | (4-OH-E2)  | 0.46   | ng/mg Creat/Day | - |     |   | 0.00-0.50          |
| 2-Methoxyestradiol <sup>‡</sup> | (2-M-E2)   | 0.033  | ng/mg Creat/Day |   |     |   | 0.01-0.08          |
| 4-Methoxyestradiol <sup>‡</sup> | (4-M-E2)   | 0.013  | ng/mg Creat/Day |   |     |   | 0.013-0.034        |
| Estriol <sup>‡</sup>            | (E3)       | 5.4    | ng/mg Creat/Day |   |     |   | 1.2-4.1            |



# Oestrogen **RATIOS & CALCULATIONS**

| Ratios and Calculations      |                             | Result | Unit            | L | WRI | н | Reference Interval |  |
|------------------------------|-----------------------------|--------|-----------------|---|-----|---|--------------------|--|
| 2-OH-E1 %‡                   | (2-OH-E1 %)                 | 60     | %               |   |     |   | 40 - 88            |  |
| 4-OH-E1 % <sup>‡</sup>       | (4-OH-E1 %)                 | 11     | %               |   |     |   | 2-10               |  |
| 16-OH-E1 %‡                  | (16-OH-E1 %)                | 29     | %               |   |     |   | 10-50              |  |
| 2-M-E1:2-OH-E1 <sup>‡</sup>  | (COMT/Methylation activity) | 0.11   |                 | _ | A   |   | 0.08-0.50          |  |
| 2-M-E2:2-OH-E2 <sup>‡</sup>  | (COMT/Methylation activity) | 0.16   |                 |   |     |   | 0.07-0.86          |  |
| 4-M-E1:4-OH-E1‡              | (COMT/Methylation activity) | 0.10   |                 |   |     |   | 0.09-1.0           |  |
| 4-M-E2:4-OH-E2‡              | (COMT/Methylation activity) | 0.026  |                 |   |     |   | 0.02-0.50          |  |
| 2-OH-E1:16-OH-E1 *           |                             | 2.1    |                 |   |     |   | ≥ 1.5              |  |
| 4-OH-E1:2-OH-E1 <sup>‡</sup> |                             | 0.19   |                 | - |     |   | 0.00-0.14          |  |
| Oxidative Stress Metabol     | ite                         | Result | Unit            | L | WRI | н | Reference Interval |  |
| 8-hydroxy-2'-deoxyguanos     | ine <sup>‡</sup> (8-OHdG)   | 6.5    | ng/mg Creat/Day |   |     |   | ≤7.7               |  |

# Catechol oestrogens & the prostate

- Study involving benign prostatic hyperplasia (BPH-1) cells showed that catechol estrogens especially 4-OHE2, elicited significant genotoxic effects as compared to E2
- 4-OHE2 showed greater ability to neo-plastically transform BPH-1 cells

Mosli HA, Tolba MF, Al-Abd AM, Abdel-Naim AB. Catechol estrogens induce proliferation and malignant transformation in prostate epithelial cells. Toxicol Lett. 2013;220(3):247-258. doi:10.1016/j.toxlet.2013.05.002



# Prostate cancer & CYP1B1

• Expression of CYP1B1 is significantly increased in hormone-related cancers

• PCa patients with high CYP1B1 expression have lower survival rates.

• Here, we found that the expression of CYP1B1 was positively correlated with the Gleason score of PCa, with the highest expression in castration resistant prostate cancer tissues. Compared with androgen-dependent PCa cells, androgen-independent PCa cells had higher levels of CYP1B1.

Lin, Q., Cao, J., Du, X. et al. CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation. Cell Commun Signal 20, 31 (2022). https://doi.org/10.1186/s12964-021-00807-x





# Case Study Summary: DAVID

#### HuMAP has identified in David :

- Upregulated aromatase enzyme
- Low progesterone metabolites
- Low androgen metabolites
- High 4:2 oestrogen ratio
- Low COMT activity
- Some cortisol imbalance



# Case Study Summary: DAVID

#### What David did : FOOD FIRST APPROACH

Metabolic support

- Kept on Cardiometabolic Plan, keep insulin under control
- Continue to lose weight more exercise
- Avoid beige sugary foods/ reduce alcohol / red wine
- Add in more fibre to support phase 3 detox part cruciferous veg

Avoided exogenous sources of oestrogen/ xenoestrogens

Gut Health

- More hydration
- Fibre

Liver Support

- NAC / vitamin C with bioflavonoids (only if drinking)
- Reduce alcohol



# Case Study Summary: DAVID

#### What we did :

Supplements

- ONE multi
- Glucose support
- Broccoli seed extract /sulforaphane
- Vitamin C
- Magnesium glycinate
- Resveratrol

#### Lifestyle

- Continue with paced walking
- Alcohol
- Sleep hygiene
- Weight training
- Mediation



# **COMT/methylation Support**

#### Food FIRST

- Food rich in folate /B12
- Support Glucuronidation
  - Cruciferous veg
  - Curcumin
  - Resveratrol
  - Rosemary
  - Dandelion
  - Garlic

#### **Supplements to consider**

- Methylated folate 400-3000mcg or folinic acid
- Methyl B12 50mcg 1000mcg
- Magnesium 150-600mg
- Broccoli seed extract /sulforaphane
- DIM
- Betaine



# **Case Study: DAVID now 7 months after HuMAP**

#### David was diagnosed with prostate cancer via biopsy shortly after the HuMAP results

- Gleason score of 9 •
- He did 1 month of external beam radiotherapy and 6 months androgen deprivation therapy, which he has completed and currently • is in remission and being monitored
- I contacted GP and oncologist with dietary guidelines and supplement list ٠
- Armed with the blood tests and the HuMAP testing info we were able to get him on a supportive dietary and lifestyle • regime that has been super important for his overall health
- David has sent off another HuMAP retest and we await the results •





# Case Study : ANY QUESTIONS

Thank you for listening.

Do get in touch if you have any further questions





#### info@kategarden.co.uk

www.kategarden.co.uk

# REFERENCES

#### Mamello Sekhoacha et al. Molecules, 2022

Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches' 10.3390/molecules27175730

Udensi, UK et al Journal of Experimental Clinical Cancer Research, 2016

Oxidative stress in prostate hyperplasia and carcinogenesis'. 10.1186/s13046-016-0418-8

Maddalena Barba et al. Journal of Experimental Clinical Cancer Research, 2009

Urinary oestrogen metabolites and prostate cancer: a case-control study and meta-analysis' 10.1186/1756-9966-28-135

Erika di Zazzo et al .Front. Oncol., Sec. Cancer Endocrinology, 2018

Oestrogens and Their Receptors in Prostate Cancer:' Therapeutic Implications' https://doi.org/10.3389/fonc.2018.00002

Ourania Kosti et al., Prostate, 2010

'Urinary oestrogen metabolites and prostate cancer risk: a pilot study'' https://doi.org/10.1002/pros.21262

A. Mosli, Mai F. Tolba et al., Toxicology Letters, 2013

'Catechol oestrogens induce proliferation and malignant transformation in prostate epithelial cells' <u>10.1016/j.toxlet.2013.05.002</u>

Yan Zhou et al. Endocrine Related Cancer, 2018

'Sulforaphane metabolites cause apoptosis via microtubule disruption in cancer' 0.1530/ERC-17-0483

# REFERENCES

#### Mamello Sekhoacha et al. Molecules, 2022

Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches' 10.3390/molecules27175730

#### Chen R, Yu Y, Dong X. J Steroid Biochem Mol Biol. 2017

Progesterone receptor in the prostate: A potential suppressor for benign prostatic hyperplasia and prostate cancer' https://doi.org/10.1016/j.jsbmb.2016.04

PrYu Y, Lee JS, Xie N et al . Cell mobility S 2014

'Prostate Stromal Cells Express the Progesterone Receptor to Control Cancer'

Nadia Zaffaroni<sup>1</sup>, Giovanni L Beretta 2021 ·

'Resveratrol and Prostate Cancer: The Power of Phytochemicals' DOI: 10.2174/0929867328666201228124038

Hammes et al., J Clinical Invest 2019.

'Impact of estrogens in males and androgens in females,' <u>DOI :10.1172/JCI125755</u>

Schwalfenburg., Nutr Metab. 2021

'N-Acetylcysteine: A Review of Clinical Usefulness (an Old Drug with New Tricks)' doi: 10.1155/2021/9949453